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CONCURRENT ERROR-DETECTING CODES FOR ARITHMETIC PROCESSORS
Raymond S. Lim

Ames Research Center

I. SUMMARY

This paper describes a method of concurrent error detection for arithmetic
processors. Low-cost residue codes with check-length & and check-base
m= 2% = 1 are described for checking arithmetic operations of +, -, x, %,
complement, shift, and rotate. Of the three number representations, the
signed-magnitude representation is preferred for residue checking. Two
methods of residue generation are described: the standard method of using
modulo m adders and the method of using a self-testing residue tree. A
simple single-bit parity-check code is described for checking the logical
operations of XOR, OR, and AND, and also the arithmetic operations of comple-
ment, shift, and rotate. For checking complement, shift, and rotate, the
single-bit parity-check code is simpler to implement than the residue codes.

IT. INTRODUCTION

The primary motivation for writing this paper is the NASF Project

(refs. 1-5), albeit there are other reasons. Two other reasons are: (1) the
Phoenix Project (ref. 6), and (2) the result of a consultation with Professor
A. Avizienis of UCLA (ref. 7). The method of concurrent error detection

described in this paper is general in theory and is applicable to all arith-
metic processors, large and small.

The goal of the NASF Project is to develop a very large computer system
capable of operating in the 10° FLOPS range for scientific computations. The
system is expected to contain approximately one-quarter million high-speed
LST IC's. This order of magnitude of hardware complexity is in the same
general class of current very large computer systems, such as the Burroughs
BSP, the CYBER 203, the CRAY 1, and the TI ASC, except that the NASF system is
planned to have better than an order of magnitude in performance. With this
large hardware complexity in the NASF¥ system, the issues of system reliability
and trustworthiness are certainly very high in the project goal. In this
paper, the justification for concurrent error detection and fault-tolerant
computing will not be reiterated since it has been very well described in a
previous paper (ref. 8). The basic theory of concurrent error detection for
arithmetic processor is relatively well known (refs. 9-17). What is not well
known are its practical applications. Whether it is necessary and economical
to have concurrent error detection in arithmetic processors is yet to be seen.
However, at the present time, there are two principal developments in this
direction — the Amdahl 470/V6 computer (ref. 18) and the Burroughs BSP com-
puter (ref. 19).



In this paper, the method of concurrent error detection uses low-cost
residue codes with a check-length & and a check-base m = 2% = 1 for
detecting errors in arithmetic operations, and uses a single-bit parity-check
code for detecting errors in logical operations. The presentation is divided
into four sections. Section III describes binary number representations and
shows that either the signed-magnitude or the 1l's-complement, but not the
2's—complement, is more suitable for residue codes. This is because both the
signed-magnitude and the 1's-complement representations have a numerical range
of M=2% -1, If & divides n, then m divides M, so that
(2" - 1) mod m = 0, and this greatly simplifies the check equations. Sec-
tion IV describes two methods for residue generation. Section V describes
residue codes for checking arithmetic operations of +, -, %X, %+, complement,
shift, and rotate. Finally, section VI describes a single-bit parity-check
code for checking logical operations of XOR, OR, and AND, and also arithmetic
operations of complement, shift, and rotate.

The author wishes to thank K. G. Stevens, Jr. of the NASF Project and
D. K. Stevenson of the Institute for Advanced Computation for their reading
and commenting on the work reported herein.

ITI. NUMBER REPRESENTATIONS AND RESIDUE CODES

The hardware implementation complexity of residue codes is directly
related to the choice of number representation and also to the check-base. In
this section it is shown that either the signed-magnitude or the 1's-
complement, but not the 2's-complement, is more suitable for residue codes.
Furthermore, if the check-base m 1is selected to be m = 2% - 1, then the
code is a low-cost residue code (ref. 10). It is low-cost in the sense that
the residue of a binary number N modulo m can be obtained by additions
(without actual divisions).

In present practices, there are three methods for representing binary
numbers in a computer: the signed-magnitude, 1's-complement, and 2's-
complement representations. Let N be an n-bit binary number consisting of
a sign bit and n - 1 magnitude bits. Without losing generality, N is
treated in this paper as an integer (not a fraction) as

b,b, (1)
or N can be written in its natural value form as
n-1 i
N= 3 b2 (2)
i=0
where the sign bit of this equation requires a different interpretation for

each of the three number representations.

Let M be the numerical range of N, that is, the range of numbers that
can be represented by the n bits of N. For both the signed-magnitude and
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the 1's-complement representations, M = 2% - 1, and the range of numbers are
-1 1), -2l - 2), ..., -1, 0, +1, +2, . . ., +(2071 - 2), +(2n-! - 1).
For the 2's-complement representation, M = 2%, and the numbers range from

-20-1 5 +(20~1 - 1). These two ranges, M, are primarily used in number com-
plementation and in subtraction. As is well known, subtraction in the 1's-
complement or the 2's-complement representation is a trivial operation. 1In

the signed-magnitude representation, subtraction is simply a complementation
followed by an addition.

Let m be the modulus on the congruence of N, or the check-base in the
residue computation of N. The residue of a negative number in complement
form can be computed by noting that if a positive number has residue r, the
negative number will have residue -r. Because of the convention that the
check bits of N should represent the least positive residue, -r should be
converted to a positive residue as

(m - 1) (-r) mod m (3)
If N dis negative, its complemented form is either
2~ 1 - N (1's-complement) %)
or
20 - N (2's-complement) (5)
The residue of these will be, respectively,

(2% - 1 - N) mod m 2" - 1) md m+ m~ (N) mod m (6)

13

(2n - N) mod m

i

2™ mod m+ m - (N) mod m (7)
Equations (6) and (7) indicate that if a number is in the complemented form
and the residue is calculated using the residue generator for positive numbers,
the following constant must be subtracted from the result to get the true
residue.

2™ - 1) mod m (1's-complement)

™) mod m (2's—complement)
If m 1is selected to be (2% - 1), then it is known from number theory that

(20 -~ 1) mod m = 0 if n = 0 mod 2 (8)

In other words, for & < n, (2% - 1) divides (2 - 1) if and only if %
divides n. A simple proof is as follows:

Let m= 2% - 1. Then 2% =1 mod m by the definition of congruence.
If f& divides n, then n = k& for some k. Also (22)k = 1K mod m, or
2KZ = 2% = 1 mod m. Hence



(2% - 1) = 0 mod (2% - 1),
which means (2% - 1) divides (20 - 1) by the definition of congruence.

From equation (8), it is clear that the 1's-complement, and hence the
signed-magnitude, representation clearly has an advantage over the 2's-
complement representation in residue checking. 1In this case, the additive
constant to make the residue of a negative number the same as for a positive
number is 0 for 1's-complement (also signed-magnitude). Some values of m
for which this works are as follows:

2 m oo
2 3 2, 4, 6, ——, 24, 36, 48, 72, ———
3 7 3,6,9, ——, 24, 36, 48, 72, ——
4 15 4, 8, 12, ———, 24, 36, 48, 72, ——

Another advantage of selecting m = 2% = 1 is the ease of residue generation
in that the residue can be obtained using only additions, not divisions, as
described in the next section.

IV. RESIDUE GENERATION

The residue generator is the principal piece of additional hardware
required to allow the use of residue codes for concurrent error detection in
the arithmetic processor. For this reason, the check-base m must be
selected so that the residue generator can be implemented for simplicity,
high-speed operation, and self-checking if possible. 1In this section, two
methods of residue generation are described. Both methods chose m = 2v -1
for low-cost residue codes and high-speed operation. One method is not self-
checking while the other method is capable of self-checking against a single
failure within the generator.

Let m=2% -1 be the check~base. For this value of m, the residue
can be represented by £ bits. Let the n-bit integer N be partitioned
into t bytes of length £ where (t - 1)2 < n < tf. Let these bytes be

Bt—lBt—z -+ « BBy. Then N from equation (2) can be written as
t-1 01 Q
N= 2 B.2°" where 0< B, <2 (9)
b i i
i=p
Since 2% = 1 mod (22 - 1), it follows that

N mod (2% -1)

m

t-1 i
> Bi(ZSL)l mod (2% - 1)
i=0

t-1
Z B, mod (22 - 1) (10)
i=gp 1



Thus N modulo (21 - 1) can be computed by additions only (without divisions).
That is, it can be computed by modulo (2¥ - 1) summation of t 2-bit bytes
of N.

Addition modulo(ZQ ~ 1) can be performed by using an ordinary binary
adder with end-around carry, or by logic decoding as suggested by Pertman
(ref. 13). Such codes generated by m = 2”7 - 1 are called low-cost residue
codes by Avizienis (ref. 10). An example of an arithmetic processor using
such a code with 2 =2 and m = 3 reported in open literature is the
Burroughs BSP arithmetic element (ref. 19). The design of the modulo-3 gener-
ator integrated-circuit chip for the BSP is also reported in open literature
(ref. 20).

A slightly different method for residue generation was described by
Kolupaev (ref. 21) in designing self-testing residue trees. This method dif-
fers from the method of equation (10) in that in the first level of computa-
tion, the width of the byte is not restricted to £ bits. Let INlm denote
the residue of N modulo m. Because of the homomorphism relating modulo m
addition with ordinary addition, the residue of N modulo m in equation (9)
for a k-bit byte width, usually k > 2, is

_ k(t-1) k(t-2)
Nl = |B._,2 l + ‘Bt_ZZ + .
m m
k
+ B2+ I8, (11)

Furthermore, if k is chosen so that the residues of Zki, i=0,1,2,...,t-1
are 1 modulo m, then equation (11) can be reduced to

|N]In = IBt_1|m+ [Bt_2|m+ RS ]B1|m+ [BO|m (12)

One such combination of numbers is m = 3 and k =4 so that

Zk}, i=0,1,2, ..., are 1, 2%, 28, 212 | || The relationship of
2K1°= 1 mod m simply implies that ¢ divides k. This again leads to the
fact that if & divides k, then ¢ divides ki. Therefore, % - 1)
divides (2Ki - 1) so that 2%1 = 1 mod m.

A comparison of residue generation using equations (10) and (12) are
shown in figures 1 and 2, respectively. It should be noted that the residue
generator in figure 2 is self-checking as described by Kolupaev (ref. 21).
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Figure 2.- Self-testing residue generator (Kolupaev), k > 2.
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V. ARITHMETIC ERROR DETECTION BY RESIDUE CODES

In this section, residue codes for concurrent arithmetic error detection
are described for addition, subtraction, multiplication, division, complement,
shift, and rotate. Because of the complexity of presenting general residue
checking equations for the general check-base m that is valid for all three
number representations, the description is restricted (1) to 2 = 2 and
m = 3, and (2) to only the signed-magnitude and the 1's—complement representa-
tions. With this restriction, the description presented here can still be
extended to other choices of m and also to the 2's-complement representation.
As described under Number Representations, the number N has n bits, with
n even or odd, and the range is M = 20 - 1.

It should be pointed out that for the signed-magnitude representation,
the sign bit is not a value bit and, therefore, it does not enter the arith-
metic computation along with the magnitude bits., For this reason and for
reason of notational convenience, n in the range M = 2™ - 1 should be
interpreted as all magnitude bits, not sign plus n - 1 bits of magnitude as

in the case for the 1's-complement representation.

In the following discussion, all additions and multiplications are
modulo 3. For a negative number A, its residue generated by a positive
number mod-3 generator is (3 - lAl3) automatically; hence, the term (3 - IA‘3)
cannot be separated into (3) ~ (IA}3).

For M = 2" - 1, it can be shown that IM}3 =0 for n even and
|M|3 =1 for n odd. If n is even, then 2 divides n and hence m = 3
divides M. Therefore, |MI3 =0 for n even. If n is odd, then write n
as ng + 1, where n, 1is an even number. The congruence

netl -1, =1

-1 3

|2 = |2%], x |2

5 3

From these discussions, it follows that [2%|, =1 for c even and
fZC'3 = 2 for c odd. Also, in modulo 3 residue calculation, |2x|Al|; is
equivalent to exchanging the positions of the two bits of |A|3, which is
equivalent to the complement of |A]3, that is, IZXIA]]3 = TKT3.

As will be described later, the check equations for n odd is more com—
plex than for n even. For this reason, it might be advantageous in practice
to pad an extra bit in order to make n even.

Addition and Subtraction

In binary arithmetic, addition and subtraction are equivalent. In sub-
traction, the subtrahend is usually 1's-complemented and then proceeds with
the addition operation. Therefore, only residue checking for addition is
described. 1In the open literature, an excellent algorithm for addition and
subtraction used in a real computer can be found in a paper by Davis (ref. 22).
The description presented in the sequel is restricted to fixed-point addition



since the other operational steps of floating-point addition such as shift and
compare can be checked separately. Also, it is assumed that overflow condi-
tions will not occur here, or that they can be detected separately using stan-

dard techniques.

Let A and B, 0 < A, B <M be two n-bit numbers to be added.

four cases to be considered.
CASE 1. A=+, B=+, and SUM = (A + B) = +

The check equation is

+
]

|sumM|, = [A + B], = [a],

3
CASE 2. A=+, B= -, |A| > |B]|, and SUM = +
The check equation is
|som|, = [a+ (- B)],
= Jal, + M, + G- 8]

where IM] = 0 for n even, 1 for n odd.

3
CASE 3. A=+, B=—-, |A| < |B|, and SUIM = -

Since the SUM is negative, it is of the form

SUM =M - (A + B)

and this must be equal to

A+ (M- B)

Taking residue modulo 3 of these two equations, the result is

]

s+ 3~ [a+B|)

which can be reduced to

G- o+l = lal,+ G- [8])

3
Therefore, the check equation is

|sum|, = [al, + 3 - [B])

3
CASE 4. A =-, B= -, and SUM = -~

Since the SUM is negative, it is of the form

lal, + [Mly + 3 - [B]

There are

(13)

(14)

(15)



SUM = M - (A + B)
and this must be equal to

M™M-A)+ (M- B)
Therefore, the check equation is

[som|, = |M|, + (3 - |a]) + (3 - |B])) (16)

where |M| = 0 for n even, 1 for n odd.

3

An analysis of the above four cases indicated that a correction factor
of 1 is required if n dis odd for cases 2 and 4. 1In practice, it is probably
more economical to pad an extra bit to make n even than to account for the
correction.

Multiplication

In the NASF system, only very high-speed multiplication algorithms are of
interest. One such algorithm is the use of mxm bits multiplier chips fol-
lowed by one row of (p,2) counters (adders) to compress p =1+ 2(2 - 1)
summands all at once without carry propagations (ref. 23). If one of these
high-speed algorithms is used, then the entire multiplication unit can be
checked by residue codes. 1In the following, only fixed-point multiplication
is described. For floating-point multiplication, the normalization and the
rounding operations must also be checked.

The residue checking of signed-magnitude multiplication is very simple
because the sign bit can be separated from the magnitude bits, and hence, all
multiplications can be treated as positive numbers. The check equation for
the product, PROD, is simply

JeRoD|; = a], x |8, an

The residue checking of 1's-complement multiplication is more complex.
There are four cases to be considered.

CASE 1. A=+, B=+, and PROD = +
The check equation is
|PrOD|, = [A], x |B], (18)
CASE 2. A=+, B= -, and PROD = -

Since the product is negative, it is of the form

M - (A x B)

10



and it must be equal to
(A) x (M - B)
Taking residue modulo 3 of the two equations, the result is

M, + (3 - |a x Bl = [al, x []M]; + 3 - [B][]

1]
o

If lMl3 for n even, the check equation is

|PrOD|, = (3 - |4 x B]))

lal; < (3 - Bl

if |Ml3 =1 for n odd, then

1+ (3 - |axB|) =lal;+ |al; x 3~ [B]y)

and the check equation is

|prOD| ,

3 - [ax 3Bl

\

|al; x (3 - [B],) + CF

where

CF = ||, - 1

CASE 3. A= -, B =+, and PROD = -

This case is similar to case 2, and the check equations are

|prop|, = (3 - [l x |B], for M|, =0

3

|pROD| , = (3 - [A|4) x [B]; + CF for |M|, =

3
where
CF = [B], - 1
CASE 4. A= -, B = -, and PROD = +
Since the product is positive, its equation is
PROD = A X B = (M- A) x (M - B)

It follows that the check equations are

1

(19

(20)

(21

(22)

11



|pROD|, = (3 - [A]) x (3 - [B],) for |M[; =0 (23)

|PROD|, = (3 - |A],) x (3 - [B]y) + CF  for Mj, =1 (24)

where

CF =1+ (3- |A])+ 3 - [B])

An analysis of the above four cases indicates that a correction factor,
CF, is not required if IMI =0 for n even. For n odd, ]M|3 =1, and a
correction factor is required whenever one or both operands are negative.

Division

Currently, there are two types of division algorithms commonly used. One
type gives only the quotient and no remainder, and uses multiplication for
iterative convergence. In this case, the division is checked automatically if
the multiplication is checked. The other type gives both the quotient and the
remainder, and these algorithms generally use the shift-and-subtract method.
Again, if the shift and add logics are checked, then the division is also

checked automatically.

In the above discussion, the division may be slowed up if each iterative
step is checked. As an alternative, the division of A/B can be checked

according to
A=BQ+r
Where Q 1is the quotient and r 1is the remainder, the check equation is

laly - |el; = 1Bl x al, (25)

Complement

Let A be an n-bit vector, and let the complement (1's-complement) of

A Dbe denoted A. Then the check equation is

|&|

3 [ - AI3

= (3 - |Al) if |M|, = 0, n even (26)

3

If
Il

1+ (3 - |aly) if M| 1, n odd (27)

3

The above equations indicate that the complement of A can be checked by:
(1) calculate |A|3 from A, and then obtain (3 —_IAI3) by some combinational
technique, (2) calculate ]Aja, and (3) compare ]Afs with (3 - fAfa) for n
even and (3 - IA[3) + 1 for n odd.

12



End-off Shift

The end-off shift operation consists of moving a number to the left (or
right) a specified number of places. Depending upon the operation being per-
formed, the bit positions vacated at the right (or left) end of the shifted
number might be filled with either 0's or 1's. 1In the following discussions,
let A be the original number and A, be the number A left (or right)
shifted by ¢ bits, ¢ £ n.

For the left shift, A and A, are as shown in figure 3(a). The value of
A, can be written as

Ac = 2%z + W

where W 1is the c-bit string shifted in from the right end. There are two
cases: (1) W=00.. .0, and (2) W=11 . . . 1.

CASE1l. W=00...0

The check equations are

lAclg = IZCZ|3 = lzclg x IZI3
= |Z|3 for ¢ even (28)
=2 x |z], for c odd (29)

The check process of the above equations can be summarized as follows:

a. Obtain Z from A by resetting the Y part of A to zero.
Calculate |Z|3 and IAC|3.

b. Check [Acl3 = IZI3 for c¢ even, or IA = 2’Zl3 for c¢ odd.

cls
CASE 2. W=11 . . .1

The check equations are

|A

cly = 12%] + |wl,

2], x lz], + |2 - 1]

3
= Ile for c even (30)
=2 x IZI3 +1 for ¢ odd (31)

and the check process is similar to case 1.

13
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For the right shift, A and A, are as shown in figure 3(b). The value of
A, can be written as

where W is the c¢-bit string shifted in from the left end. Again, there are
two cases: W=00. . .0and W=11 . . . 1.

CASE1. W=00...0

The check equation is simply
IAC!3 = |Y|3 (32)
and the check process is as follows:
a. Obtain 2°Y from A by resetting the right most ¢ bits.
Calculate |2CY'3 and IAC|3. The value !2CY|3 is |Y| for

3
¢ even and 2|Y!3 for ¢ odd.

b. Check IAC[3 = [2CY|3 = |Y|3 for ¢ even. For c odd, check
2|Ac|3 = |AC|3 = 2|YI3 = IZCYlg'

CASE 2. W=11 . . .1

From the equation A, = 2" + Y, the (2" °W) part has value 2% - 207C,
Thus

A, - " - 270y 4y
The check equations are
lAclg = |2n - 2n—C13 + |Y|3
= |Y|3 for n even or odd, and c even (33)
= |Y|3 -1 for n even and ¢ odd (34)
= ]Yl3 + 1 for n odd and ¢ odd (35)

The check process is similar to case 1 above except that there are three com-
parisons to be made depending upon the evenness and oddness of n and c.

Rotate

Residue checking for left or right rotate operations is simple if
|M|3 =0 for n even, and is difficult if IM!3 =1 for n odd. The

15



mathematical developments for these two cases are different, and the case for
n even is derived first. Refer to figure 4 for the following discussions:

CASE 1. |M|3 = 0 for n even
Let A. be the result of rotating A left by c¢ bits for 0 < c < n. The
result of A, modulo M is equivalent to multiplying A by 2% modulo M, and

can be shown as follows:

From figure 4(a),

lacly = 1¥ly + 12°2]y
and
2%, = [2° x (z + 2" D) |,
= |2CZIM+ IanIM
- [¥] + |22l
Thus, |Acly = |2°Aly and this concludes the proof. The above proof immedi-
ately leads to
8l = |12l
Since ’|2CA|M|3 = |2°|, if [M|; = 0, then the check equations are
lacl, = 2%,
= |al, for c even (36)
= 2]al, for c odd (37)

Right rotate by ¢ bits is equivalent to left rotate by n - ¢ bits.
Since n 1is even as stated, then n - ¢ is odd if ¢ 1is odd. Therefore,
the check equations for right rotation are exactly the same as the check
equations for left rotation.

16
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CASE 2. |M|3 =1 for n odd

For left rotation

lacl, = 1252 + Y|,
= ]le + ]Y|3 for c¢ even (38)
= 2]z, + |¥], for c odd (39)
For right rotation
lacl, = 12772 + ¥
= 212,3 + IY,’3 for c even (40)
= Izls + ]Yl3 for ¢ odd (41)

VI. LOGICAL ERROR DETECTION BY PARITY CHECKING

In this section, a single-bit parity-check code for concurrent error
detection is described for complement, shift, rotate, XOR, OR, and AND., Parity
checks, when compared to residue checks, are very simple for these operatioms.
In the following discussions, A and B are n-bit vectors, where n can be even
or odd.

Complement

The parity modulo 2 of the complement of A 1is very easy to predict.
Let A be the complement of A. If A has parity P(A), where P(A)=0orl,
then the parity of A is

P(A) P (A) for n even (42)

= P(A) for n odd (43)

End-off Shift
For all end-off shift operations, refer to figure 3 for reference. Let
P(W) be the parity of W, P(Y) be the parity of Y, and P(Z) be the parity
of Z. The parity of A is

P(A) = P(Y) © P(2)

18



For left shift, the parity of A., and hence the check equation, is

P(A.) = P(2) ® P(W) = P(W) @ P(A) @ P(Y) (44)
For right shift, the parity of A,, and hence the check equation is

P(A.) = P(W) ® P(Y) = P(W) @ P(A) @ P(2) (453
It should be noted that both P(Y) and P(Z) are the parity bits of the shifted
out bit strings.

Rotate
For all rotate operations, refer to figure 4 for reference. Since a
rotate operation merely rotates ¢ bits around, there is no gain or loss in
the total number of 0's or 1's. Therefore, the check equation is
P(Ac) = P(A) (46)

for all cases.

XOR

The bit-by-bit XOR operation is closed for the single-bit parity-check
code; that is, the XOR of any two code words is also a code word. Let A
have parity P(A), B have parity P(B), and XOR = A ® B have parity
P(XOR). Then

P(A) = a1 ®a,,® . ®a; ®a,
P(B) = by ® b, . . .%Dp, 0 b,
and the check equation is
P(XOR) = P(A © B)
= (an_1 ® bn—l) &, ., . @ (a1 ® bl) ® (a0 & bo)
(ap-1 @ an.o ® . . . ® a; ®a,)

® (bp_7 ® by ®. . . 8Db; ®by)

P(A) © P(B) 47)
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OR and AND

The bit-by-bit OR and AND operations are not closed under the parity-
check codes. Although these two operations can be checked by residue codes as
described by Monteiro and Rao (ref. 15), they are probably best checked by the
parity method suggested by Sellers et al. (ref. 12). In their method, they
suggested an augmented adder to check the OR operation by noting that

(A®B)© (AB) = A+ B
and to check the AND operation by duplication.

In checking the OR operation, the SUM and CARRY outputs of the augmented
adder are

SUM = (A ® B) ® (AB) = A+ B

I

CARRY AB

Let P(SUM) be the parity of the SUM output, and P(CARRY) be the parity of
the CARRY output. Then the check equation for the OR operation is

P(SUM) = P(A) @ P(B) ® P(CARRY) (48)
In checking the AND operation, both the SUM and the CARRY outputs are
SUM = CARRY = AB

Thus, the AND operation can be checked by duplication, and the check equation
is

P(SUM) = P(CARRY)

Another method for checking OR and AND (suggested by D. Stevenson during
the review of this paper by noting the SUM equation above) is by the use of
the XOR property according to the identity of

A®B= (A+ B) ® (AB)

From this equation, it follows that

P(A © B)

P(A + B) © P(AB)

P{A) ® P(B)
Therefore, OR and AND can be checked as follows:

P(A + B)

P(A) ® P(B) © P(AB)

P(AB)

P(A) © P(B) ® P(A + B)
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Depending upon the logic implementation, it appears that this method suggested
by Stevenson may be simpler than the method suggested by Sellers et al.
(ref. 12).

VII. CONCLUSION

The culmination of an effort to develop a low-cost method for concurrent
error detection for arithmetic processors, large and small, has been presented
in this paper. The method uses a low-cost separate residue code to check
arithmetic operations, and uses a single-bit parity-check code to check logi-
cal operations. Assume the processor to be checked has a word length of n
bits, the method shows that:

1. TFor checking arithmetic operations of +, —, %X, and +, a low-cost
residue code with check-base m = 2% - 1, 2 £ n, & divides n, and n even,
is simple and economical.

2. For checking arithmetic operations of complement, shift, and rotate,
either a residue code or a single-bit parity-check code can be used. Both
methods are simple and economical. TIn terms of logic implementation complex-—
ity, the parity-check code is simpler than the residue code.

3. TFor checking logical operations of XOR, OR, and AND, the single-bit
parity-check code is the simplest method to use and to implement.

4, For using a residue code to check arithmetic operations, the signed-
magnitude or the 1's-complement representation, not the 2's-complement repre-
sentation, should be used. This is because these two representations have a
numerical range of M = 2% - 1., If ¢ divides n, them m divides M, so
that (2% - 1) mod m = 0, and this simplifies greatly the check equations. In
residue checking of multiplication and division, the signed-magnitude repre-
sentation is the simplest to use.

5. For using the single-bit parity-check code to check XOR, OR, and AND
in conjunction with an augmented adder, this adder design is considerably
different from the well-known STTL 74S181, which is currently a standard com-

mercial arithmetic-logic unit.

From the above five points, it appears that the architecture of the pro-
cessor is best structured with the following functional units:

1. A floating-point add unit
2. A multiply/divide unit

3. An integer unit capable of performing integer arithmetics and logical
operations

This paper did not proceed into the logic design and implementation of
the suggested method of concurrent error detection. Such an exercise would
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certainly be very laborious and also beyond the scope of this paper. However,
based upon practical experiences and today's integrated-circuit technology, it
can be conjectured that the added redundancy for checking should not exceed
207% of the processor complexity, and that the method should provide a self-

checking coverage of at least 80Z% of the processor.

The problem of residue generation is the basic obstacle, and hence the
cost, of using residue codes for self-checking. ¥For this problem, the best
current solution is probably an LSI implementation of the self-testing residue

generator suggested by Kolupaev (ref. 21).

Although the results given in this paper are very encouraging, the prob-
lem of applying them to the design of a processor still requires a large
amount of effort. In any case, the search for methods of concurrent error
detection for processors is rapidly converging and considerably narrowed.

Finally, the problem of designing a self-checking computer system should
take a top-down approach and consider the problem from the overall system
viewpoint, at least to include the memory and the processor. At present, the
memory is protected by a modified Hamming code and the processor is self-
checked by a combination of residue codes and parity-check codes. This is a
mismatch! What is needed is one uniform coding system, perhaps a biresidue
code or some modified linear residue codes, that can protect both the memory
and the processor. At present, however, it is not known whether or not such
a coding system can be found to give a cost effective performance.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, March 21, 1979
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